学校主页
正文 | Quick Navigation
通知公告
当前位置: beat365 >> 正文

北京信息科技大学于幻副教授网络学术报告

发布人:    发布时间:2021-06-10    【打印此页】


        报告题目:Well-posedness on MHD Equations with Partial or Fractional Dissipation
        报  告  人:于幻
        工作单位:北京信息科技大学
        报告时间:2021-06-17  10:00-11:00
        腾讯会议ID: 843 269 075
        
        报告摘要:

        In this talk, we consider the initial-value problem for the  magnetohydrodynamic (MHD) equations with partial  dissipation.  We firstly prove the existence and uniqueness of solutions of the 2D MHD  with only fractional magnetic diffusion $(-\Delta)^\beta b$ with any $\beta>1$ (without velocity dissipation) for the vorticity being in Yudovich-type space, by establishing some new time weighted estimates of the magnetic field, which indicates that the global regularity problem on the 2D MHD equations with only magnetic diffusion (without velocity dissipation) is critical. At last, the local exsitence and uniqueness  of weak solutions with the minimal initial  regularity assumption to the dD magnetohydrodynamic (MHD) equations with the fractional dissipation $(-\Delta)^\alpha u$ and without the magnetic diffusion are established.  

In this talk, we consider the initial-value problem for the  magnetohydrodynamic (MHD) equations with partial  dissipation.  We firstly prove the existence and uniqueness of solutions of the 2D MHD  with only fractional magnetic diffusion $(-\Delta)^\beta b$ with any $\beta>1$ (without velocity dissipation) for the vorticity being in Yudovich-type space, by establishing some new time weighted estimates of the magnetic field, which indicates that the global regularity problem on the 2D MHD equations with only magnetic diffusion (without velocity dissipation) is critical. At last, the local exsitence and uniqueness  of weak solutions with the minimal initial  regularity assumption to the dD magnetohydrodynamic (MHD) equations with the fractional dissipation $(-\Delta)^\alpha u$ and without the magnetic diffusion are established.  
In this talk, we consider the initial-value problem for the  magnetohydrodynamic (MHD) equations with partial  dissipation.  We firstly prove the existence and uniqueness of solutions of the 2D MHD  with only fractional magnetic diffusion $(-\Delta)^\beta b$ with any $\beta>1$ (without velocity dissipation) for the vorticity being in Yudovich-type space, by establishing some new time weighted estimates of the magnetic field, which indicates that the global regularity problem on the 2D MHD equations with only magnetic diffusion (without velocity dissipation) is critical. At last, the local exsitence and uniqueness  of weak solutions with the minimal initial  regularity assumption to the dD magnetohydrodynamic (MHD) equations with the fractional dissipation $(-\Delta)^\alpha u$ and without the magnetic diffusion are established.  

        报告人简介:
        于幻,北京信息科技大学副教授。主要从事流体方程的数学理论研究,在ARMA, JFA, JDE, Nonlinearity等著名数学刊物上发表学术论文10余篇。曾访问普林斯顿大学,剑桥大学,香港中文大学。

上一条:我院2020-2021学年第二学期优秀硕士论文拟推选结果公示

下一条:广西大学徐尚进教授网络学术报告

河南理工大学 中国 河南焦作 高新区 世纪路2001号 [454000]
版权所有 :2023 beat365·(中国)唯一官方网站 校ICP备03110号