学校主页
正文 | Quick Navigation
通知公告
当前位置: beat365 >> 正文

中山大学数学系颜立新教授网络学术报告

发布人:    发布时间:2022-05-03    【打印此页】

 

        报告题目:

        Almost everywhere convergence of Bochner-Riesz means for the Hermite operators

        报  告  人:颜立新

        工作单位:中山大学数学系

        报告时间:2022-05-05 10:00-12:00;

        腾讯会议ID:406-520-643

       

        报告摘要:

        In this talk we will discuss almost everywhere convergence of Bochner-Riesz means for the Hermite operator H = −∆+ |x|2  in Rn . Surprisingly, for the dimensions n ≥2 our result reduces the borderline summability index for a.e. convergence for  f∈Lp(R) with p ≥2 as small as only half of the critical index required for a.e. convergence of the classical Bochner-Riesz means for the Laplacian.  When n = 1, we show a.e. convergence holds for  f∈Lp(R) with p ≥2 whenever λ> 0. Compared with the classical result due to Askey and Wainger, we only need smaller summability index for a.e. convergence. This is a joint work with P. Chen, X.T. Duong, D.Q. He and S. Lee.

        报告人简介:

        颜立新,教授,博士生导师,主要从事调和分析领域的研究,已在J. Amer. Math. Soc., Comm. Pure Appl. Math., Memoirs of AMS,  Math. Ann., J. Math. Pures Appl., Adv Math. 等数学期刊发表学术论文八十余篇。

上一条:2022-05-05beat365大学生“劳动教育周”活动方案和实施计划

下一条:上海大学数学系赵发友教授网络学术报告

河南理工大学 中国 河南焦作 高新区 世纪路2001号 [454000]
版权所有 :2023 beat365·(中国)唯一官方网站 校ICP备03110号