学校主页
正文 | Quick Navigation
通知公告
当前位置: beat365 >> 正文

苏州大学王云教授学术报告

发布人:    发布时间:2022-11-10    【打印此页】


报告题目 Liouville type theorems for steady Navier-Stokes equations

报 告 人: 王  云 教授

工作单位: 苏州大学

报告时间: 2022-11-14(周一)   8:30-11:30

腾讯会议ID: 794 364 7383  

报告摘要:

In this talk, we will discuss some Liouville-type theorems for the steady incompressible Navier-Stokes system in a slab. When the no-slip boundary conditions are prescribed, we prove that any bounded solution is trivial if it is axisymmetric or ru^r is bounded, and that general three-dimensional solutions must be Poiseuille flows when the velocity is not big in L∞ space. When the periodic boundary conditions are imposed on the slab boundaries, we prove that the bounded solutions must be constant vectors if the swirl velocity or the radial velocity is independent of the angular variable, or ru^r decays to zero. The proofs are elementary and are based on energy estimates. The key technique is to establish a Saint-Venant type theorem that characterizes the growth of Dirichlet integral of nontrivial solutions. This is a joint work with J. Bang, Changfeng Gui, and Chunjing Xie.

报告人简介:

王云,苏州大学教授,博士毕业于香港中文大学。主要研究领域为不可压缩流的适定性问题,特别是非齐次不可压方程与管道流问题。曾多次主持国家自然科学基金项目。


上一条:南通大学黎野平教授学术报告

下一条:北京应用物理与计算数学研究所琚强昌研究员学术报告

河南理工大学 中国 河南焦作 高新区 世纪路2001号 [454000]
版权所有 :2023 beat365·(中国)唯一官方网站 校ICP备03110号