报告题目:On positive periodic solutions of a class of Lienard equations with repulsive singularities in degenerate case 报告人:余星辰 工作单位:杭州师范大学 报告时间:2023-03-22 8:30-12:00 地点: 我院 404 摘要:In this paper, we study the existence, multiplicity and dynamics of positive periodic solutions to a general Lienard equations with repulsive singularities. The Ambrosetti- Prodi type result is proved in the absence of the so-called anticoercivity codintion. Furthermore, with s as a parameter, under some conditions on the function h, it has been shown that for any M>1 there exists s such that the equation x''+f(x)x'+h(t,x)=s has two positive T-periodic solutions . As a by-product of the property, we obtain sufficient conditions to guarantee the existence of positive T-periodic solutions of indefinite differential equations.
余星辰,毕业于南京信息工程大学,理学博士。攻读博士学位期间受国家留学基金委资助,在捷克科学院数学研究所联合培养,现为杭州师范大学数学学院讲师。余星辰的主要研究方向是强制条件缺失及常数上、下解不存在情形下的二阶微分方程周期正解的Ambrosetti-Prodi问题,相关研究成果发表在Proc. R. Soc. Edinb. Sect. A Math., Commun. Contemp. Math.等国际知名期刊上。 |