报告题目:四阶Schrodinger算子的波算子的LP估计
报告人:尧小华 教授
工作单位:华中师范大学
报告时间:2023年12月02日 9:00-10:00
报告地点:我院 305
Let H=Δ2+V be the fourth order Schrodinger operators on R3 with real fast decay potentials. If zero is neither a resonance nor an eigenvalue of H, then it was recently proved that wave operators W(H+Δ2) are bounded on LP for all 1<p<∞ and further that W(H,Δ2) are unbounded on the endpoint spaces p=1 and ∞. However, note that even if V is a compactly supported potential, zero resonance or eigenvalue of H possibly happens due to the existence of some nonzero solution of Hf=0 in a suitable L2-weighted spaces. So it would be interesting to further establish LP-bounds of wave operators with zero threshold singularities. In this talk, we will talk about some works showing that wave operators W(H,Δ2) are firstly bounded on LP for 1<p<∞ in case of the first kind resonance, and then W(H,Δ2) are bounded on LP for 1<p<3 but unbounded for all 3≤p<∞ in the second and third kind resonance (eigenvalue) cases. The results give sharp LP boundedness of wave operators on R3 except for the endpoints cases. Moreover, we also address some progresses of higher order wave operators in other dimensions.
报告人简介:
尧小华,华中师范大学数学与统计学学院教授,博士生导师;2010年入选教育部新世纪人才支持计划,主要从事调和分析与微分算子的研究,围绕薛定谔算子的色散估计、孤立子的稳定性等问题开展科研工作,论文发表在Comm. Math. Phys.、Trans. AMS.、Ann. H. Poincare、J. Funct. Anal.等国际数学期刊上;目前连续主持国家基金委面上项目3项,曾主持教育部重点项目1项,参与了教育部偏微分方程长江学者创新团队的建设。学术上先后访问过美国Johns Hopkins大学、普林斯顿高等研究所、新泽西罗格斯大学等高校。
欢迎大家参加!